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ABSTRACT

N

This report considers plane-wave scattering by a homogeneous
material body of revolution. The problem is formulated in terms of
equivalent electric and magnetic currents over the surface which
defines the body. Application of the btoundary conditions leads to
four simultaneous surface integral equations to be satisfied by the
two unknown equivalent currents, electric and magnetic. The set of
four equations is reduced to a coupled pair of equations by taking
linear combinations of the original four equations. Because many
pairs of linear combinations are possible, there are many surface
integral equation formulations for the problem. Two formulations
commonly encountercd in the literature are discussed and solved by
the method of moments. A general computer program for material
bodies of revolution is developed, listed, and documented. Examples
of numerical computations are given for dielectyic spheres and a
finite dielactric cyiinder. The computed results for the sphere are

compared to the exact series solution obtained by separation of

A
\

variables.
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PART ONE

ELECTROMAGNETIC SCATTERING FROM A HOMOGENEOUS MATERIAL
BODY OF REVOLUTION

THEORY AND EXAMPLES

I. INTRODUCTION

The problem of plane-wave scattering by a homogeneous material body
of revolution is formulated in terms of equivalent electric and magnetic
currents over the body surface. Application of boundary conditions leads
to a set of four integral equations to be satisfied. Linear combinations
of these four equations lead to a coupled pair of equations to be solved.
One choice of combination constants gives the formulation described by
Poggio and Milier [1]. This formulation has been applied to material
cylinders by Chang and Harrington [2], and to material bodies of revolu-
tion by Wu [3]. We will call this choice the PMCHW formulation (formed

by the initials ¢f the above cited investigators).

Another choice of combination constants gives the formulation
obtained by Miiller [4]. This formulation has been applied to dielectric
cylinders by Solodukhov and Vasil'ev [5] and by Morita [6], and to bodies

[1] A. J. Poggio and E. K. Miller, "Integral Equation Solutions of Three-
dimensional Scattering Problems,' Chap. 4 of Computer Techniques for
Electromagnetics, edited by R. Mittra, Pergamon Press, 1973, Equa-
tion (4.17).

[2] Yu Chang and R. F. Harrington, "A Surface Formulation for Characteristic
Modes of Material Bodies,'" Report TR-74~7, Dept. of Electrical and Com-
puter Engineering, Syracuse University. Syracuse, N.Y., October 1974.

[3] T. K. Wu, "Electromagnetic Scattering from Arbitrarily-Shaped Lossy
Dielectric Bodies,'" Ph.D. Dissertation, University of Mississippi, 1976.

[4] C. Muller, Foundations of the Mathematical Theory of Electromagnetic
Waves, Springer-Verlag, 1969, p. 301, Equations (40)-(41). (There are
some sign errors in these equations.)

[5] V. V. Solodukhov and E. N. Vasil'ev, "Diffraction of a Plane Electromagnetic

Wave by a Dielectric Cylinder of Arbitrary Cross Section,"

Technical Physics, vol. 15, No. 1, July 1970, pp. 32-36.

[6] N. Morita, "Analysis of Scattering by a Dielectric Rectangular Cylinder by
Means of Integral Equation Formulation,' Electronics and Communications in
Japan, vol. 57-B, No. 10, October 1974, pp. 72-80.
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of revolution by Vasil'ev and Materikova [7]. We will call this choice
the Miiller formulation. Conditions for the uniqueness of solutions are
established in terms of the combination constants. It is found that

solutions to both the PMCHW formulation and to Miiller's formulation are

unique at all frequencies.

Numerical solutions to the coupled pair of equations are obtained by
the method of moments [8]. It is relatively easy to obtain numerical solu-
tions to these equations because the required operators are the same as those
evaluated in earlier reports (9, 10]. An exemplary computer program capable
of obtaining the solutica to both the PMCHW formulation and the Miiller formu-
lation is described and listed. This is a main program which uses subroutines
similar to those in [10] to compute the equivalent electric and magnetic
currents and the two principal plane scattering patterns for a loss-free
homogeneous body of revolution excited by an axially incident electromagnetic
plane wave. Computed results for the equivalent currents and principal plahe
scatte;ing patterns of a dielectric sphere whose rclative dielectric constant
is four show reasonable agreement between our solution to the PMCHW formula-
tion, our sélution to the Miiller formulation, and the "exact" series [11]
solution in the resonance region. Computer program subroutines which calcu-
late the "exact" series solution for perfectly conducting spheres as well as

for loss-free homogeneous spheres will be described and listed in a subsequent

-

report.

[{7] E. N. Vasil'ev and L. B. Materikova, "Excitation of Dielectric Bodies of
Revolution,' Soviet Physics - Technical Physics, vol. 10, No. 10, April
1966, pp. 1401-1406.

[8] R. F. Harrington, Field Computation by Moment Methods, Macmillan Co.,
New York, 1968.

[9] J. R. Mautz and R. F. Harrington, '"H-Field, E-Field, and Combined Field
Solutions for -Bodies of Revolution,' Interim Technical Report RADC-TR~
77-109, Rome Air Development Center, Griffiss Air Force Base, New York,
March 1977.

{10] J. R. Mautz and R. F. Harrington, "Computer Programs for H-Field,
E-Field, and Combined Field Solutions for Bodies of Revolution,"
Interim Technical Report RADC-TR-77-215, Rome Air Development
Center, Griffiss Air Force Base, New York, June 1977.

[11] R. F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill
Book, Co., 1961. Section 6-9.




II. SURFACE INTEGRAL EQUATION FORMULATION

An electromagnetic field propagating in a homogeneous medium of
permeability Ha and permittivity €o is incildent on the surface S of a
homogeneous obstacle of permeability My and permittivity €4° The sub-
script e denotes exterior medium and the subscript d denotes diffracting
medium. We wish to calculate the scattered electromagnetic field E?, gf
outside S and the diffracted electromagnetic field E, H inside S in terms
of the electromagnetic field E;, ﬂ? which would exist on S in the absence
of the obstacle. This original problem is shown in Fig. 1 where gi, §}
are the electric and magnetic sources of gi, ﬁ? and n is the unit normal

vector which points outward from S.

The equivalence principle (stated in Appendix A) is used to piece
together an outside situation consisting of medium Moo € and field g?, Ef
ou;sideis and an inside situation consisting of medium Ha» €g and field
-E, -H inside S. This composite situation is shown in Fig. 2. Since
E?, Ef is source-free outside S and g?, E} is source-free inside S, the
only sources in Fig. 2 are the equivalent electric surface current J and

the equivalent magnetic surface current M on S.

As a second application of the equivalence principle, we combine an
outside situation consisting of medium My €4 and zero field with an inside
situation consisting of medium Hyr €4 and field E, H. This combination of
situations is shown in Fig. 3. Since E, His source-free inside S, the only
sources in Fig. 3 are the equivalent electric surface current -J and the
equivalent magnetic surface current -4 on S. By using (A-1) and (A-2) to

express the surface currents in terms of the discontinuities of the tangen-

tial fields across S and by using

axE=gx (& +E) &b
nx}lzgx(!is'*'ﬂl) (2)

on S, the interested reader can verify that the surface currents in Fig. 3
are indeed the negatives of those in Fig. 2. Equations (1) and (2) are the

boundary conditions that the tangential components of the fields in the



Fig. 1. Original problem.

}

ane

Fig. 2. Outside equivalence.

a0 €q
Zero field

Fig. 3. Inside equivalence.




original problem as shown in Fig. 1 are continuous across S.

The scattered field E°, H° outside S and the diffracted field E, H_
inside S could easily be calculated if J and M were known because the media
into which g_and g_radiate is homogeneous in Figs. 2 and 3. We have to
determine J and M. The equivalence principle states that there exist J and
M which radiate the fields in Figs. 2 and 3, but the equivalence principle

does not tell what J and M are. The equivalence principle does state that

J=3X§V (3)
M=Exn (4)
but this is not very useful because E and H are unknown.
From Figs. 2 and 3,
- _ i
Tl T2l )
nxH =nx# (6)
L ad ~e ane A
+
-nXxE, =20 N
- ~d
+
~B.X§d-0 (8)
wilere
E_ 1is the electric field just inside S due to g, M, radiating in ue,ee

is the magnetic field just inside S due to J, M, radiating in Hes€,

AN

is the electric field just outside S due to Js M, radiating in LPELF

is the magnetic field just outside S due to_g,lg, radiating in ud,sd

é?%-é?ﬁ-&“g &

The equivalent currents J, M which appear in Figs. 2 and 3 satisfy (5)-(8)
because (5)-(8) were obtained from Figs. 2 and 3. It is shown in Appendix B
that the solution to (5)-(8) is unique. Therefore, (5)-(8) uniquely deter-
mine the equivalent currents J, g_of Figs. 2 and 3.

Equations (5)~(8) form a set of four equations in the two unknowns
J and M. The usual methods of equation solving apply only when the number
:f qu;;ions is equal to the number of unknowns. We want to reduce the

set of four equations (5)-(8) to two equations. One way to do this is to

form the linear combination



- + i
n X (§e + a§d) =n xE (9)

An

of (5) and (7) and the linear combination

SR WEE S (10)
of (6) and (8) where a and B are complex constants.

The solution J, M to (5)-(8) satisfies (9) and (10). This J, M
will be the only solution to the pair of equations (9) and (10) if

o x (B + By = 0 (11)
on x (5 + gH) =0 (12)
i —e wd’
have only the trivial solution J = M = 0. From (11) and (12),
*
P =-af P (13)

e d

where P is the complex power flow of E;, E; inside S and Pd is the complex
+ _+

power flow of Ed’ Hy outside S. The asterisk in (13) denotes complex con-
*

jugate. If aB is real, then the real part of (13) reduces to

Real(Pe) = - aB*Real(Pd) (14)

*
If aB is not only real but also positive, then

Real(Pd) =0 (15)
because both Real(Pe) and Real(Pd) are greater than or equal to zero.
Equation (15) implies that

P,"Ed=9,*.*iz=0 (16)

Substitution of (16) into (11) and (i2) yields

=0 (17)



The system of equations (16) and (17) is precisely the homogeneous system

of equations associated with (5)-(8). It was shown in Appendix B that

this homogeneous system of equations has only the trivial solution J =M = O.
Therefore, if aB* is real and positive, then the coupled pair of equations
(11) and (12) has only the trivial solution J = M = 0 so that the solution
J, M to (5)-(8) is the only solution to the coupled pair of equations 9

and (10).

If a = B8 =1, then (9) and (10) become

-n X (E; + E;) =n E_i (18)
ax (H +HD =nxp (19)
-~ .‘e \And e -

The set of equations (18) and (19) is the coupled pair of surface integral
equations transcribed by Poggio and Miller [1]. We call these equations

the PMCHW equations. Since a = B = 1 implies that aB* is real and positive,
the argument consisting of (11)-(17) and involving real power flow shows

that (18) and (19) uniquely determine the desired J, M of Figs. 2 and 3.

That (18) and (19) uniquely determine J, M of Figs. 2 and 3 can
also be shown as follows. The desired J, M of Figs. 2 and 3 satisfies
(18) and (19) because (18) and (19) were obtained from Figs. 2 and 3.
This desired J, §.w111 be the only solution to (18) and (19) if the associ~

ated set of homogeneous equations

(20)

W
o

-+
-n x (B +Ey

(21)

|
o

Lo- .+
- + =
a X (Ee Ed)

‘has only the trivial solution J =M = 0.

The following argument shows that (20) and (21) have only the trivial
solution J = M = 0. Let Ed’ Ed be the electromagnetic field outside S due
to J, M radiating in Mg €4- Let Ee’ He be the electromagnetic field inside
S due to J, M radiating in Hor Eg- Use the equivalence principle to form
the composite situation consisting of medium Hqs €4 and field Ed’ Ed outside
S and medium Ugs Eg and field ige’ Tﬂe inside S as shown in Fig. 4. In

Fig. 4, Ed’ Ed is a source-free Maxwell<an field outside S. Since Ee’ Ee is



Fig. 4. Composite situation used to prove that (20)
and (21) have only the trivial solution
J=M=0.

~—

Fig. 5. Composite situation used tu prove that (26)
and (27) have only the trivial solution
J =M= 0.

~r ~—
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a source-free Maxwellian field inside S, the field jEe, Tﬁe appearing in

Fig. 4 is also a source-free Maxwellian field inside S. Now, (20) and (21)
state that the tangential components of the field in Fig. 4 are continuous
across S. Thus, Fig. 4 is entirely source-free so that the field in Fig. 4
is zero everywhere in which case (B-1)-(B-4) are satisfied. But, as shown in
Appendix B, (B-1)-(B-4) have only the trivial solution J=M= 0. Hence,
(20) and (21) have only the trivial solution J=M-=0.

If
F:
a=--2 (22)
‘:
e
B _
g = -2 (23)
“e
then (9) and (10) become
- fa .+ i
-nx(E, -—"E)=nxE (24)
e
- Y3 o+ i
-n (ﬂe-;;"ljd)=gxli (25)

The set of equations (24) and (25) is the coupled pair of surface integral
equations obtained by Miiller [4]. We call these equations the Miiller equa-
tions. The singularity that *he kernels of the integral equations (24)

and (25) exhibit as the source point passes through the field point is not
as pronounced as the singularity of the kernels of (18) and (19). If

Ho» €» Y4 » and eq are real in (22)-(25), then GB* is real and positive.
In this case, the argument consisting of (11)-(17) shows that (24) and (25)

uniquely determine the desired J, M of Figs. 2 and 3.

An alternate proof, valid for lossy media, that (24) and (25) uniquely
determine the desired J, M is presented. This proof is similar to the argu-
ment which used Fig. 4 to show that (18) and (19) uniquely determine the
desired J, M and is as follows. The desired ﬂ) H_of Figs. 2 and 3 satisfies
(24) and (25) because (24) and (25) were obtained from Figs. 2 and 3. This
desired J, M will be the only solution to (24) and (25) if the asscciated

set of homogeneous equations



- d +, _

-n x (E_, - E;'Ed) =0 (26)
- Y4 o+

-rl x (-Ee - u—-e-}{ ) =0 (27)

has only the trivial solution J=M=0.

The following argument shows that (26) and (27) have only the trivial
solution J = M = 0. Let Ed’ Ed be the electromagnetic field outside S due
to J, M radiating in ud, €4 Because the electromagnetic field.gd’.ﬂd is

a source-free Maxwellian field in My €4 outside S, the dual electromagnetic

field ny4 Hd’ - T]L»Ed where
. d

BN
=] 4
ng —\/ :, (28)

is also a source-free Maxwellian field outside S. Let Ee’ He be the
electromagnetic field inside S due to Js E_radiating in Mgs Egt Because
the electromagnetic field Ee’ He is a source-free Maxwellian field inside S,

the dual electromagnetic field n H , - J;-E where
e ~e n -~e
- e
N Al T (29)

is also a source-free Maxwellian field inside S. Use the equivalence
principle to form the composite situation consisting of medium Hy» Bq and

1 . . ,
field N4 Ed’ - - Eﬁ outside S and medium Ue’ €0 and field

d
ueee 1
(nhH, -—E ) inside S as shown in Fig. 5. Now, (26) and (27)
HiEq e Ne ~e

state that the tangential components of the field in Fig. 5 are continuous

across S. Thus, Fig. 5 is entirely source-free so that the field in Fig. 5

is zero everywhere in which case (B-1)-(B-4) are satisfied. But, as shown

in Appendix B, (B-1)~(B-4) have only the trivial solution J = M = 0. Hence,

(26) and (27) have only the trivial solution J = M = 0.

10




ITI. METHOD OF MOMENTS SOLUTION FOR A BODY OF REVOLUTION

In this section, a method of moments solution to (9) and (10) is
developed for a homogeneous loss~free body of revolution. Special cases of
(9) and (10) are the PMCHW equations (18) and (19) and the Miilller equations
(24) and (25).

For compatibility with equation (40) on page 14 of [9], we rewrite
(9) as

- ﬁt-(ge + qg+)tan B ﬁihgian (30)
where tan denotes tangential components on S and e is given by (29). The
fields on the left-hand sides of (30) and (10) are written as the sum of
fields due to J and fields due to M. Advantage is taken of the fact that
the operator which gives the electric field due to a magnetic current is
the negative of the operator which gives the magnetic field due to an
electric current and that the operator which gives the magnetic field due
to a magnetic current is the square of the reciprocal of the intrinsic
impedance times the operator which gives the electric field due to an

electric current. In view of the above considerations, (30) and (10) be-

come
1 1 .- a a .+ I - |
(= 3= E,(D) + o= HOD = 22 E (D + S HIOD) o= B (31)
e e e e e
- 1 + B - i
mR LD 4T E W Bl T B max (32)
e d

where E denotes the operator which gives the electric field due to an
electric current. The subscript e or d on E denotes radiation in either
ue, €a or Mg Ed' The superscript + or -, if present on E, denotes field
evaluation either just outside S or just inside S. The E}s in (31) and-

(32) are the corresponding magnetic field due to electric current operators.
We stress that all g's and ﬂfs in (31) and (32) are, by definition, operators
which give electric and magnetic fields due to electric currents, even though

these operators act on both electric and magnetic currents J and M in (31)

and (32).

11



Let

N ‘
t t ¢ tb :
J = I, J.+1 33
- n=z.m JZI ( nj ~n] nJ "‘nJ) ( )
M=n z (vp, 35+ vt (34)
~ - nj
n=-» j=1
t ¢ t $ - .
where I ., I',, V ., and V', are coefficients to be determined and
nj nj nj nj
t jn¢
gnj Etfj(t)e (35)
¢ _ jn¢
gnj 2¢fj (t)e (36)

In (35) and (36), t is the arc length along the generating curve of the body
body of revolution and ¢ is the longitudinal angle. u, and 54) are unit
vectors in the t and ¢ directions respectively such that 2¢ x u. =1 and

fj (t) is the scalar function of t defined on page 10 of [9]. The body of

revolution and coordinate system are shown in Fig. 6. Substitution of

(33) and (34) into (31) and (32) yields

n=2_m JZl (H, (J P aH . ))tan Vst M, (J D (J ))tan g
an " ¢ ¢
(- = (J ) d -d(J ) it +(_§e(£njl _ *Ng Ed(gnji) 1¢ } -1 Ei
Na Ne nyq tan nj ne LI N4 tan "nj ne -t
(37)
m t t ¢ ¢
-n x z %‘ {(Ee ~nj . Bne ~d —*11_])) vt o+ (\gg (A{njl + Bne »d(»wn‘]l)vcb +
n=-o j=1 Ne N4 d J e Nd 4 3
- .t +, t t . |
(ﬁe(gnj) + Bﬂd(gnj))ln + (H (J ) + BH (J ))I j)}' =n xH (38)

Define the inner product of two vector functions on S to be the
integral over S of the dot product of these two vector functions. Because

the field operators in (37) and (38) are the same as those considered in [9],

12



only the nth term of the sum (37) or (38) contributes to the inner product
of (37) or (38) with either J 0 °F J¢ni' Hence, the inner product of (37)

with J i’ i=1 2,...N and J¢ i i=1,2,...N, successively and the inner pro-
duct of (38) with J ni’ i=1, 2 ..N, and J¢ T i=1,2,...N, successively gives

the matrix equation

r ‘ e N

R an an >

eI i I b i B I N A L vt
ne nd ne nd ne N, nd ne ne nd n n

an +

Y-ttty ™ - vt (2*t + e 2%t @+ 4 d>¢) ¥ v
ne nd ne nd e nd ne e n n

8n Bn

¢t ¢d . —e ¢ t¢ té t t
(Zne'+ nd nd) (zne M Ny an) (Y + BY ) (Y + BYnd) Tﬁ In
ee B e to Pl 78 OF | gydty (y90 4 gyt £

(2t - —& 2% (2 Ol + e w4 2% T i
ne nd nd ne nd n n
(39)

for n=0, +1, +2,..... . In (39), Vﬁ, V:, fﬁ, and f: are column
vectors of the coefficients appearing in (33) and (34). Also,
pPq - - P . q
(ag) 15 Jf g " B H(J ds (40)
Pa N p q
Zafdsy T 7N, j I Los + Bglpy)de (41)
po=L ” P B s (42)
ni n w-ni =
e
P, = Jf JP . < n x Hi ds (43)
nl =Nl -~ an

where p may be either t or ¢, q may be either t or ¢, and f may be
either e or d. If p=q in (40), it matters whether the magnetic field

H (Jq ) is evaluated just outside or just inside S. The Y's without

f~nj
13



carets in (39) are given by the right-hand side of (40) in which the mag-
netic field is evaluated just inside S. The Y's with carets in (39) are

given by the right-hand side of (40) with magnetic field evaluation just

outside S.

The Y and Z submatrices on the left-hand side of (39) are the same
as in equation (88) on page 24 of [9] with the reservations that the caret
on Y denotes magnetic field evaluation just outside S, and the extra sub-
script e or d denotes radiation in either ue, Ee or ud, €4° The I column
vectors on the right-hand side of (39) are the same as in equation (88)
on page 24 of [9] whereas the V column vectors in (39) are the same as the

V's without carets in equation (88) on page 24 of [9].

The solution vﬁ, V:, fﬁ, and f: to the matrix equation (39) determines
the equivalent electric and magnetic currents J and M according to (33) and
(34). From Fig. 2, these currents radiate in Ho» € ta produce the scattered

field outside S.

IV. FAR FIELD MEASUREMENT AND PLANE WAVE EXCITATION

In this section, measurement vectors are used to obtain the far field
of the equivalent surface currents J and M radiating in Hgr Eqt This far
field is the far field scattered by the homogeneous body of revolution. For
plane wave excitation, the composite vector on the right-hand side of (39)

is ekpressed in terms of these measurement vectors.

By reciprocity,

E° - I%_= ” (J(x) + E(1L) - M(x) - H(IZ))ds (44)
g

where E° is the far electric field due to i and M, ;&r is a receiving elec-

L
~r

tric dipole at the far field measurement point, E(I&T) is the electric field
due to I2 ., and E(I&r) is the magnetic field due to I&r' Both gﬂl&r) agd
ﬁ(l&r) are evaluated at point r on S where ¢t is the point at which the dif-
ferential portion of surface ds is located. If &r is tangent to the radiation

sphere,

14
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Fig. 6. Body of reveluticn and coordinate system.

e
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X

Fig. 7. Planc wave scattering by a dielectric body of
revolution.
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B = g, . (45) ~
Ti,ewjkrr —j&r.~£
Bz = S G < Tape (46)

where r. is the distance between the measurement point and the origin in
the vicinity of S. Also, kr is the propagation vector of the plane wave
coming from I&r’ k is the propagation constant and n is the intrinsic
impedance of the medium outside S. To simplify the notation in this sec-~
tion, we have omitted the subscript e from all parameters dependent on the
medium., It is understood that all far field measurement vectors and plane

wave excitation vectors depend only on the external medium Ho» €40

Substitution of (33), (34), (45), and (46) into (44) gives

~jkr .
- r = e hd o . jné
S =N T REE 4 ROP GO 4 REOTT 4 mSNT T (47)
¢ bmr S n .n n n n n n n
r
for IL = u_, and
504 ~8
g5 = lne 7 CREOGE PP 4 kPR 4 j%The T (48)
$ lnn:r L n n n n n n n n
_ T r r , " ,
for Iﬂr E¢ where Ug and E¢ are unit vectors in the Gr and ¢r directions
respectively. As shown in Fig. 7, Or and ¢T are the angular coordinates of

the receiver location at which 1%, is placed. TIn (47} and (48), Eg and E:
are the er and ¢r components of Es. Also, vi, Vﬁ, T;, and fﬁ are column

vectors of the coefficients appearing in (33) and (34). Furthermorae, ﬁiq is

a row vector whose jrh element is given by

~jud =ik - r
RPY = ke r q oyt e T Tgs (49)
I\»] J '\J ‘wq

5

where p may be either t or ¢ and q may be either £ or ¢. In view of (35)

and (36), (49) 1s the same as equation (92) on page 26 of [9]. Tt is

shown in [9] that the right-hand side of (49) does not depend on ¢r.
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For plane wave Incidence and expansion functions Jsj and J j given
-~ wn
by (35) and (36), the equivalent currents (33) and (34) and the fields (47)
and (48) have speclal forms. To obtain these forms, assume that the incident

i
electromagnetic field E%, H" is either a 0 polarized field defined by

i t -.jkt ° };
L" =knuge (50)

i LT
H = -ku e 7 {51)
- ~y

or a ¢ polarized field defined by
_jk e r )
El = knu e "F (52)
- ~y
-jk - r

B =yl e °F (53)

where Et is the propagation vector and, as shown in Fig. 7, 2; and uy are

unit vectors in the ﬁt and y directions respectively. Here, et is the
colatitude of the direction from which the incident wave comes. Et is in

the xz plane. No generaliry is lost by putting &t in the xz plane because

g o D e

if E{ were shifted out of the xz plane by an angle ¢t, the response would
also be shifted by the same angle ¢t.

Substituting (50) and (51) into (42) and (43), then substituting (52)
and (53) into (42) and (43), next taking advantage of the relationships

gt xa=gt (54)
w-ni -~ w-n i

d) = - vt [~
~?'I—ni A “ni (35)

which are apparent from (35), (36) and Fig. 6, then comparing the results

with (49), and finally using equation (104) on page 29 of [9], we obtain




LRTeP

ER AL e b b il bl aen ookl Gl LR e s e
i dman

e T A AN DR At

[ *eg Tt | e 3t |

vn Vn 1{n -Rn

B¢ ;;M _;ﬁd)ﬂ Foo
n n n n

= (56)
Esd -

7t e _pod _ﬁwe
1 n n n

o0 Too Rt e
n n T n

The first superscript on §n and ?; in (56) is the superscript which appears
on the right-hand side of (39). The second superscript on §n and ?n in (56)
denotes the polarization of the incident plane wave. If this second super-
script 1s 6, the 6 polarized field given by (50) and (51) is incident. If
this second subscript is ¢, the ¢ polarized field given by (52) and (53) is
incident. The jth element of the columm vector isq on the right-hand side

of (56) is given by (49) with 6 replaced by Bt. Conceding that er does not
appear explicitly in (49), we really mean that 0. is replaced by 8, after the

surface integral in (49) is evaluated. In other words, er 1s replaced by Bt
in equation (95) on page 27 of [9].

For plane wave incidence, the +n and -n tarms in formulas (33) and
(34) for the equivalent currents can be combined as fullows. According to
equations (102) and (103) of [9], the Y and Z submatrices in (39) are either

even or odd in n. The even-odd properties in n of the submatrices of the

square matrix on the left-hand side of (39) are tabulated as

+ - +

where + denotes an even s« sbmatrix and - denntes an odd submatrix. It
follows that the submatrices of the inverse of the square matrix on the

left-hand side of (39) have even-odd properties in n given by

18
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From (56) and the even-odd properties of ®PI glven by equation (104) om
X

page 29 of [9], the column vectors v and In on the right-hand side of

(39) are either even or odd in n. The even-odd properties of the sub-

matrices on the left-hand side of (56) are tabulated as

-

- +

ad 4

Because of the above even-odd properties «f tha square matrix on the left-

hand side of (39) and the column vector on the right-hand side of (39),

the solutions to (39) satisfy

~ - 1
¢t0 vr¢ »Gra §t¢
-1 -n n n
S A A
= (57)
ftn o o _fre
-n -n n n
790 Fo¢ Nl oo
L -0 -n A n n J

> 3 g
The first superscript on the column vectors '\J*_'n and i+n in (57) is that
which appears on the column vectors V_ and fn“un the left-hand side of

(39). The secend superscript on the column vectors in (57) denotes either

the 6 or the ¢ polarized in. ldent plane wave. Substitution of (57), (35},

and (36) into (33) and (34) yields
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) ) c 8 .
J = (fi: Ju, + 2 2({-“1’1: Ju,cosi{ng) + 2j(ff:e)3¢sin(n®) (58)
%.gé = (fgge)g¢ + nzl Zj(fvze)gtsin(n¢) + 2(fvge)g¢cos(n¢) (59)

for the 6 polarized incident wave and

3¢ = (;f2¢)3¢ + nzl 2)(F15)u sin(ng) + 2(ffi¢)g¢cos(n¢) (60)
%f - (E\TS‘?’)EC + nzl 2(EGE¢)9¢cos(n¢) + 2;1(%{/*:%%51“@) (61)

for the ¢ polarized incident wave. In (58)-(61), f 1s a row vector of
the fj(t).‘ the superscript 6 or ¢ on J or M in (58)-(61) differentiates

the equivalent currents for the 6 polarized incident wave from those for

the ¢ polarized incident wave.

The far scattered fields (47) and (48) are specialized to the 6
polarized incident plane wave by apperding the additional subscript 8 to
ES on the left-hand sides of (47) and (485 and the additional superscript
6 to Vﬁ, Vﬁ, Yﬁ, and Tﬁ on the right-hand sides of (47) and (48). More-
over, in view of equation (104) on page 29 of [9) and (57), the +n and -r

terms in {47) and (48) can be combined. fs a result, (47) and (48) become

Jis

r g 7 ¥ ~ . -~ .
T LSS S N IR e A (AL
00 dar o 0 o 0 : n n n n
T n=1
sttt L gpUpd0 ) ~
+ R 5
+ R f” ; fn ) co (n¢r)} (62)
“ikr o
ES - H?THWH v (_ﬁtﬂﬁtﬂ_ R¢Hv¢0 + Rt¢ft0 +
LYy 2uvr ‘ noon non non
1 =]
+ R®¢f¢ﬂ)sin(n¢ ) (63)
n n r

for the 6 polarized incident plane wave. Simlilavly, (47) and (48)

become




s _ne v atéuts | =déudd | Stértd | =46246 '
Egy o nzl RV + Rn¢35 + R Tﬁ + Rnefn )sin(n ) (64)
—jkrr
ES = zdne [ REGO 4 ROOTOO Lo T (-REC U - RO L
¢ 4ﬂrr . o o £ n n n n
Cntortd | codrdd
+ Rn In + Rn In )cos(n¢r)} (65)

for the ¢ polarized incident plane wave. The first subscript.on'Es on
the left-hand sides of (62)-(65) denotes the receiver polarization and
the second subscript on E® denotes the transmitter polarization.
The scattering cross section qu is defined by
ane2[ES |2
o= - (66)
1112
Pq IE I
where p is either 6 or ¢ and q is either 6 or ¢. 1In (66), ES 1is a com-
ponent of the scattered field given by (62)-(65) and lgll is the magnitude
of the electric field of the incident plane wave, According to (50) and (52),

"] = kn (67)
for both polarizations so that
Anri]Es |2
= (68)
pd k2 2
Normalized versions of (68) are
o 4ri|ES (2
Ta k"a™n
o rZIES l2
R )
A ™

where a is some characteristic length associated with the scatterer.and A is

the wavelength in the external medium.
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V. EXAMPLES

A computer program has been written to calculate the equivalent
currents and scattering patterns for a dielectric body of revolution ex-
cited by an axially incident plane wave. This program is described and
listed in Part Two. Some computational results obtained with this program

are given in this section.

Figures 8 and 9 show the magnitude and phase of the normalized

J J M M :
(5]
equivalent currents T ﬁi s Eg’ and EQ- on the surface of a dielectric
y y x .

[

sphere for which ka = 3 and € 4, Here, k is the propagation constant
in free space, a is the radius of the sphere and €, is the relative
dielectric constant of the sphere. Figure 8 represents our solution of the

PMCHW formulation. Figure 9 depicts our solution of the Miiller formulation.

In Figs. 8 and 9, the incident field is a plane wave traveling in
the positive z direction. THETA = 0° is the forward scattering direction
and THETA = 180° is the backscattering direction. The incident field is
given by (50) and (51) with et = 180°. The origin r = 0 is at the center

of the sphere. In Figs. 8 and 9, Je is the Ug = M4, component of electric
current (58) versus 6 in the ¢ = 0 plane, J¢ is the Y component of (58)
versus 0 in the ¢ = 90° plane, M, is the u, = - 4, component of magnetic

current (59) versus 6 in the ¢ = 90° plane, and‘M¢ is the H¢ component of
(59) versus 6 in the ¢ = 0° plane. For axial incidence, only the n=1 term
is present in (58) and (59). The symbols X and + denote respectively

- magnitude and phase of the method of moments solution for the pertinent
component of the electric or magnetic current. The solid curves are the

exact equivalent currents obtained from the Mie series solution [11]. The

normalizing constants Ex and Hy are defined in terms of the incident field

(50) and (51) by

E =u -« E° = - kn
x ~X r=0 .
(71)
i -

(11] R. F. Harrington, Time-Harmonic Electromagnetic Fields, MeGraw-Hill
Book Co., 1961. Section 6-9.
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where k and n avre respectively the propagation constant of free space and

the impedance of free space.

The curxrents of Figs. B and 9 were obtained by using a 20 point
Gaussian quadrature formula for all integrations in ¢. All integrations
over the functions {f,(t)} in t = a(n-8) were done by sampling each
f,(t) four times. The {fj(t)} consisted of 14 overlapping triangle

3
{(divided by the cylindrical coordinate radius) functions equally spaced

in 8. More precisely,

NP = 31
NPHI = 20 (72)
MT = 2

where the above variables are input data for the computer program described

and listed in Part Two, Section V.

Figures 10 and 11 show the scattering patterns radiated by the cuir-

rents of Figs. 8 and 9 respectively. The symbols ¥ and + denote

o] o
-g%~and “Q%*respectively. The solid curves are the exact patterns obtained

g?om then;ie series solution [11). The patterns Y90 and 0¢O are given by
(69), (62) and (63). Here Yap is the © polarized pattern versus er in the
¢ = 0 plane and o o is the ¢ polarized pattern versus Gr in the ¢ = 90°
plane. The THETA in Figs. 10 and 11 refers to Br. For axial incidence,
only the n=1 terms ave present in (62) and (63). Elsewhere [3, 12}, the
pattern o, is called the horizontal polarization because it is polarized
parallel to the scattering plane. Similarly, the pattern 0¢e is called the

vertical polarization because it is polarized perpendicunlar to the scatter-
ing plane.
Figures 12-17 show the scattering patterns for three other dielectric

Figures 12 and 13 are for relative dielectric constant €.~ i.1,
16 and 17 for £ 20. All other

spheres.
Figs. 14 and 15 for €= 10., and Figs.

{12} P. Barber and C. Yeh, "Scattering of Electromagnetic Waves by
Arbitrarily Shaped Dielectric Bodies," Applied Optics, vol. 14, No. 12,

Decemher 1975, pp. 28542872,
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parameters in Figs. 12~17 are the same as in Figs. 10 and 11. 1In Figs. 12
and 13, values less than 0.0001 are plotted at 0.0001.

Figures 18 and 19 show the computed scattering patterns of a finite
dielectric cylinder of radius a and height 2a when a is 0.25 free space
wavelengths. The relative dielectric constant of the cylinder is €. = 4,
The incident field is a plane wave traveling in the positive z directionm,
the same field which was incident upon the previous dielectric spheres.

%0 90
Figure 18 shows ——E-and —Qf as obtained from our solution of the PMCHW

na Ta
g

08 %40
formulation. Figure 19 shows ——E-and —QE- as obtained from our solution
: ma wa
o g

of the Miiller formulation. The patterns > > are plotted with the
mTa Ta

symbols x and + respectively.

The equivalent currents which radiate the patterns of Figs. 18 and 19
were obtained by using a 48 point Gaussian quadrature formula for all inte-
grations in ¢. All integrations in t over the functions {fj(t)} were done by

sampling each fj(t) four times. The {fj(t)} consisted of 11 overlapping
triangle (divided by the cylindrical coordinate radius) functions equally

spaced in t. More precisely,

NP = 25
NPHI = 48 (73)
MT = 2

where the above variables are input data for the computer program described

and listed in Part Two, Section V.

VI. DISCUSSION

According to Figs. 12 and 13, :hc scattering patterns obtained from
our solution of the Miiller formulation are more accurate than those ob-.
tained from our solution of the PMCHW formulation for the dielectric sphere

with ka = 3 and e = 1.1. From plots not included in this report, we ob-

served that both our PMCHW solution and our Miiller solution for the equivalent
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currents on the dielectric sphere were reasonably accurate. However, the
following argument shows that when €. is near one, a slight inaccuracy in
the equivalent currents could affect the scattering patterns drastically.
As €, approaches one, the equivalent electric and magnetic currents
approach n x Ei and E} x E_respectively whereas the scatterning patterns
approach zero. This meané that the equivalent electric and magnetic
currents produce fields which nearly cancel each other. Hence, a slight

inaccuracy in the equivalent currents could cause a large percentage

inaccuracy in the scattering patterns.

We believe that our Miller sclution is more accurate than our
PMCHW solution whenever €, is close to one. When a and B are given by
(22) and (23) as in the Miiller formulation, the left-hand sides of (9) .

and (10) approach -M and J respectively as €. approaches one. In this

~
case, the expected solution

le

ar

1
)
$o

R
M=E xn
A

cén be obtained by inspection of (9) and (10). However, if a = B = 1
as in the PMCHW formulation, the solution to (9) and (10) is not obvious
when . er = 1 because the field operators on the left-hand sides of (9)
and (10) are not diagonal. With our Miiller solution, the matrix on the
left-hand side of (39) would become tridiagonal for Er =1 if its first
two rows of submatrices were interchanged. With our PMCHW solution, no

such simplification of this matrix is possible fer e, = 1.

We recommend at least 10 expansion functions per wavelength per
‘component along the generating curve of the dielectric body of revolution.
For example, if the generating curve were one wavelength long, the order
of the square matrix on the left-hand side of (39) should be at least 36.

The number 36 is arrived at as follows. There should be at least 9 expan~

sion functions per component of current. We say 9 expansion functions

rather than 10 because we are using overlapping triangle functions with no
peak of triangle function at either ends of the generating curve. There

are two components of electric current and two components of magnetic

current.
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According to equations (20)-(23) of [9] and (58)~(61) of [9], each
element of the square matrix in (39) is a triple integral consisting of
one integration with respect to ¢ and two integrations with respect to t.
The ¢ integral is evaluated by using a Gaussian quadrature formula. Each
t integration is done by crude sampling akin to the trapezoid rule. In
any case, there should be at least 10 sample points per wavelength in the
media in question. For instance, if Prax is the largest cylindrical
coordinate radius of the dielectric body of revolution and tmax is the

length of the generating curve, then

10t
NP > —DaX

- (74)
107p
ax

NPHI > —

where NP and NPHI are input arguments of the subroutine YZ described and

listed in Part Two, Section II and *» iz the wavelength in the media in

question. If f = e in (40)-(41) then X is the wavelength in the external

media, but if f

fracting body of revolution. The main program in Part Two, Section V is

d in (40)-(41) then XA is the wavelength inside the dif-

oversimplified in that it uses the same values of NP and NPHI for both

f =e and f = d.

Loss of accuracy in the computed patterns of Figs. 16 and 17 may
be due to the fact that (74) was violated. According to (74), the values
of NP and NPHI for f = d should be nearly 70 or greater instead of the low
values appearing in (72). Unfortunately, increasing the values of the

variables NP and NPHI increases the computer time required to solve the

problem.

We have been trying to obtain accurate numerical results for the
dielectric sphere for which a = 0.2 free space wavelengths and e, = 80.
from our general dielectric body of revolution program. We have not been
able to obtain clear-cut convergence with respect to the variables on the
left-hand sides of (72) because we could not afford to increase them as
much as desired. Our PMCHW solution and our Miiller solution for the

equivalent currents and scattering patterns differ from each other and

from the exact solution.
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For the sphere, each element of the square matrix on the left-haud
side of (39) can be written as a sum over the infinite set of spherical
nodes. So far, we have not been able to successfully implement this alter-
nate eveluation of the matrix elements 1In terms of spherical modes. The
major difficulty seems ro be lack of agreement of a few matrix elements for
which both sxpansion and testing functions are near one of the poles of the

sphere.

Both the PMCUW solutioa and the Miiller solution are obtained by taking
a linear cowbination of (5) and (7) and a lirear combination of (6) and (8).

There are two other possibilities which are

(1) A linear combination of (5} and f6) and a linear rombi-
nation of (7) and (8).
{2) & linear combination of (5) and (8) aud a linear combi~

nation of (€} and (7).

These other two possibilities give rise toaltermative numerical solutions

which may compare favorably with the PMCHW solution and the Miiller aolutinn.




APPENDTX A

THE EQUIVALENCE PRINCIPLE

Let ﬁe' ﬂp be an electromagnetic field defined outside a closed

surface §. The permeability, permittivity, and electric and magnetic

<

source currents outside & are Var Eor J , and Me respectively. This

e’ xe
outside situation where the subscript e stands for "exterior medium"

is shown in Fig. A-1. In Fig. A-1l, the media and sources inside S are
undisclosed, lLet Ed’ Hﬂ be an electromagnetic field defined inside S
where the permeability, permittivity, and electric and magnetic sources
are “d’ €47 gd’ and Md respectively. This inside situation where the
subscript d stands for "diffracting medium" is shown in Fig. A~2. 1In
Fig. A-2, the media and sources outside S are undisclosed. The equi-
valence principle states that the solution to the composite radiation

problem consisting of medium p , ¢ and sources J , M outside S, medium
e e “~pl mp

ud, Ed and sources gd’ gd inside S, and electric and magnetic surface
currents J, M on 5 given by
J=nx @ - ﬂd) (A-1)
M= (E - E ; -
M Q»e Ld) «n (A-2)

where n is the exterior unit normal vector on S is the composite elec-
o,

tromagnetics field E, E.defined by

E’ H-: Ee’ ﬂe outside S (A-3)
E, H = Ed’ Hd inside S (A-4)

The ccmposite radiation problem is shown in Fig. A-3 which is entitled

composite situation.

The equivalence principle is proved by showing that the configu-
ravion of media and sources in Fig. A-3 gives rise to the composite fleld
E, t defined by (A~3) and {(A-4). Now, E, i will be the field generated
by the media and sources of Fig. A-31 if E, H satisfies Maxwell’s equaticas

with source terms included and the radiation condition at infinity. E, H

and

satisfies Maxwell's equations outside § and inside S because ﬁe’ H




undisclosed media

and sources 5
~
\\\\\ ] -
Fig. A~1. Outside Situatiom.
undisclosed media
‘ n
— and sourggg_ g
/./ e
vooe T .M
{ 4’ d°=d’~d S

\ \
Eorty )
\\_4____,_”.‘___// )

Fig. A-2. 1Inside Situation.

Wooe T M
e’ e*=e’-e

E LH
R e

Ud’Ed’g—d’ﬂd >S
\ d’=d //
.’/’
. S~ -
31 = L} x (Ee—ﬂd) !L{ - (Ete—&d) XE

Fig. A-3. Composite Situation.
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i e g

I,

oo

Ep Ed satisfy Maxwell's equations outside S and inside S respectively.
E, H also satisfles the radiation condition at infinity becausegﬁe, ﬂe
satisfies the radiation condition at infinity. Tt remains to be shown
that Maxwell's equations for E, H exhibit the surface current sources

g_and M given by {A-1) and (A-2).

It 45 well known that a surface current source on S gives rise to
a discontinuity across S of the tangential component of the fieid. The
preceding statement 1s easily verified by means of an argument based on
the integral forms of Maxwell's equaticns. Now, this same argument can
be construed to imply that a discontinuity across S§ of the tangential
component of the field gives rise to a surface current source .on S.
Hence Maxwell's equations for E, H exhibit the electric and magnetic
surface current sources J and M on S given by (A-1) and (A-2). There-
fore, E, H is the solution to the composite radiation problem shown in
Fig. A-3 because E, H satisfies Maxwell's equations with sources and the

radiation condition at infinity.




APPENDIX B

PROOF THAT THE SOLUTION TO EQUATIONS (5)-(8) IS UNIQUE

The solution J, M to (5)-(8) will be unique 1f the assocliated set

. of homogeneous aquations

‘}l, x ‘[}e = {0 (B__l)
— x - = () -
nxd =0 (B-2)
+
—E » ..E,.d = O (B_3)
+.
-n X H, = 0 (B-4)
A wd
has only the trivial solution J =M = 0.

From (B-1) and (B-2), J, M radiate in Her €4 to produce a field
wnose tangential components are zerc just inside S. Hence, according
to the relation between J, M and the discontinnity of tangential field
across S as exemplified by (A-1) and (A-2), the field Ee’ Ee radiated by

i, M in Mo € outside S satisfies

nxH, = (B-5)
o rn=M (B-6)

Just outside 5. See Fig. B-1.

From (B-3) and (B-4) the electric and magnetic currents -J, -M radiate

in ¢ to produce a field whose tangential components are zero just outside

3
d” "d
S. Hence, according toc the relation between -J, M and the discontinuity of

tangential field across S, the field ng, "ﬁd radiated by -J, -M in My €4
satisfies

nox (SH) =T (B-7)

~d

it

() *n=~M (8-8)

just inside S. See Fig. B-2.

The equivalence principle 1s used to combine the outside situation
in Fig. B-1 with the inside situation in Fig. B~2 to obtain the composite

gituation shown in Fig. B~3. Because of (B-5)-(B-8), the composite




Fig. B-1. Radiation of J,M according to (B-1) and (B-2).

Ud’ Cd .
Zero field —- - /
.’// ~ /
Hasr \
1 d’ d. )S

Rt 4 /
M

Fig. B~3. Composite Situation.
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situation in Fig. B~3 is source-free. Therefore, the field in Fig. B-3
is zero everywhere. Hence, the flelds in Figs. B-1 and B-2 are zero
everywhere which implies that J = M = 0.

Thus, the solution to (5)-(8) is unique because the associated set

(B-1)~(B~4) of homogeneous equations has only the trivial solution.
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APPENDIX C

MORE EXAMPLES

The equivalent currents and scattering patterns for the dielectric
spheres for which €= 4 and ka = 4, 5, and 6 are plotted in Appendix C.
Figures C-1 to C-4 are for ka = .4, Figs. C~5 to C~8 are for ka = 5, and
Figa. C-9 to C-12 are for ka = 6. All other parameters are the same as in
Figs. 8-11 in Section V. In particular, the input data for the computer
program which generated the method of moments results plotted in Figs. C-1

to C-12 is given by (72).

It is 2vident from Figs. 8-11 and Figs. C-1 to C-12 that the method
of moments solutions for the equivalent currents and scattering patterns
are not as accurate at ka = 4, 5, and 6 as at ka = 3. Loss of accuracy

at the higher values of ka may be due to violation of (73).
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PART TWO

COMPUTER PROGRAM

I. INTRODUCTION
The computer program calculates the equivalent electric and magnetic
currents (58) and (59) and the scattering patterns (70) for a loss-free

homogeneous dielectric and/or magnetic material body of revolution immersed

in an axially incident plane wave. This computer program consists of a

main program and the subroutines YZ, PLANE, DECOMP and SOLVE.

Part Two consists of definitions of the input and output for the
subroutines YZ, PLANE, DECOMP, and SOLVE, listings of these subroutines,
definitions of the input and output for the main program, a verbal flow
chart of the main program, and a listing of the main program with sample
input and output. The subroutines YZ and PLANE are similar to subroutines
of the same name in [10]. The subroutines DECOMP and SOLVE are, except:
for dimension statements, exactly the same as in [13]. Hence, the insides
of the subroutines YZ, PLANE, DECOMP, and SOLVE are not described in detail
in Part Two. Because these subroutines are quite complicated, a black box
approach i1s suggested wherein the user is concerned with just the input and
output of these suﬂroutines. However, the user is encouraged to delve

inside the main program and to make any changes therein that he deems neces-

sary to suit his needs.

II. THE SUBROUTINE YZ

Description:
The subroutine YZ (NN, NP, NPHI, M, MT, RH, ZH, X, A, Y, Z) stores the
matrices Ynf and an defined by

tt té
rYnf Ynf'
Ynf = (75)
Y¢t Y¢¢
i nf an
[ et th]
an an
y/ £ = (76>
n 40t 500
i nf an
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by columns in Y and Z respectively. The submatrices on the vight-hand
sidee of (75) and (76) are given by (40) and (41). The first 9 argu-
ments of YZ are input variableé. Except for the new input varianles M
and MT, the suhrout’ne YZ is the same as the old subroutine YZ on pages
17-21 of {10]). If M = - 1 and MT = 2, these subroutines are exactly the
same as far as the calculation of Y and Z in terms of the rest of “he

input varizbles iz conceimed.

M= ~ 1 for field evaluation just inside S and M = + 1 ror field
evaluation just cutside 5. M = - 1 1f f = e in (75) and M = 4+ 1 {iF
f »din (75). The valu2 of M is not used in calculating (76) because che
tangential components of the electric field cperatot ﬁf in (41) are con-
tinvous across S. All numevrical integrations over t of fj(t? appeqiing
in (35) and (36) are doue by sempling each f (t) 22 times. The repre-—
geniations of pf (t) and (of ({t)) given B) (€6) erl (67) of [9] ere
replaced by representations whlch contain 2*MT iawpulse functiouns instead of
4 impulse functions. For instance, (€6) of [9] is replaced by

2%MT

1
pE () = p§1 Tot(i-1) x25Mr Mt_tm(hl)*mr)’

77

1=1,2,...N where N will be defined in the pavagraph which follows the next
paragraph. The T's appearing in (77) will be defined by (78).

Seven of the input variables are the same as in the old subrcoutine

YZ on pages 17-21 of [10]. These
appearing in [9] by
NN = n
NP = P, page 9
NPHI = N , page 13
RH(1) = kpi, piage 9

ZH(1Y = kz., page 9
X(k) = x page 173

Alk) = A paps 13

60
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né dependence in (35) and (36), (p;, z;),

In summary, n denotes the e
i=1,2,...P &gre coordinates on the generating curve, the k which multi-
plies pI and 2; is the prewagation constant, and X and Ak are the

abscissas and wejghts for the N, point Gaussian quadrature integration

¢
in ¢. Note that NP-1 should be an integer multiple of MT. If NP-1 is

not an integer multiple of MI, the program will ignore FH(m) and ZH(m)

for
[(NP ~1) /MT]*MT+] < m < NP
where [(NP-1) /MT] is the largest integer which does not exceed (NP-1)/MT. :

Minimum allocations are given by

COMPLEX Y(4*N*N), Z(4*N*N)

DIMENSION RH(NP), ZH(NP), X(NPHI), A(NPH1), D(NG)
PD(NG), TF{2*MT*N), CR(NPHI), CI1{NPHI), C2(NPHI),
C3(NFHI}, C4(NPHI)

COMMON RS(NG), ZS(NG), SV(NG), CV(NG), T(2*MT*N)

where
N = [{(NP-1)/MT] - 1

NG = (N+1)*MT

The variables in common make the results of some intermediate calculations

done 1n YZ available to the svhbroutine PLANE described irn Section ITI of
Part Two.

We mention a few portione of YZ which differ from the subroutine

listed on pages 18-21 of [10]. Squation (29} of [9) has been generalized to

21 |
k - 1 N
m AT - d
e (-4 TR ((‘21 dyox (g 1rvq ~ 2 Cwrxaenyer drx-ner O
. J=
1
- T N TS + 5y o (79)
amrad-mrer a0 P TR L Dypeg Ty wrer derean 9
K4 ‘V:D’l\
for J = 1,2,...M and 1 = 1,2,...MT where
M ;
T b oty a (80) '
[ 1 ;
MT
= “"x
Ay =k Yl Byrage, (61)

AR M NINRLTY, RN T




and the d's are given by equation (28) of [9]. Note that Al is the
electrical length of generating curve over which the first half of
fJ(t) exists and that A2 is the electrical length of generating curve
over which the second half of fJ(t) exists. The generalization of
equation (68) of [9] is

k
T! = hfﬂzfii:ilil (82)
2*MT* (J-1)+1 Al

2*MT*J-MT+1 A2

for J = 1,2,...N, and I = 1,2,...MT where Al and A2 are given by (80)
and (81). Expressions (78) - (83) are calculated in DO loop 68. DO
loop 12 accumulates A1 in DEL. DO loop 19 puts (78) in T(2*MT*(J-1)+T)
and (82) in TP(2*%MT*(J~1)+I). DO loop 15 accumulates A2 in DEL. DO

loop 16 puts (79) in T(2*MT*J-MT+I) and (83) in TP(2*MI*J-MT+I).

The subscripts KT, LT, and J1 inside DO loop 32 are obtained as
follows. S5ince the generating curve consists of NG = (N+1)*MT small
intervals, it is composed of (N+1) large intervals where the mth lavge
interval consists of the ((m-1)#*MT+1)th through the (m*MT)th small
intervals. The index T of DO loop 60 denotes the Ith small interval.

The Ith small interval is contained in the (19+1)th large interval where

19 = [(I-1)/MT]). The second half of f19(t) and the first half of f19+1(t)
are in this large interval. The index K of DO loop 32 denotes fI9+K—1(C)'
Since T((m-1)*2*MT+1) througn T(M*2*MT) is allotted to fm(t), m=1,2,....h,
fm(t) is preceded by (m-1) overlaps. For each overlap the subscript of T

increases by an amount MT not accounted for by [. Hence, replacing m by

194K~1, we arrive at the subscript

KT = T + (I94K-2)*M7

for T. Here, KT is the field subscript which refers ro the testing

function. By analogy, the source subscript LT which refers tc the expan-

sion function is given by

LT = ) + (J941.-2)*MT




Retaining f19+K—l(t) as the testing function, we take the analogously i

subscripted function fJ9+L-1(t) to be the expansion function and arrive

at the matrix subscript ;

J1 = (J9HL-2)*N2 + T19+K-~1

where, as in the program, N2 = 2*N,

DO loop 17 ac:umulates in R1 the contribution to (Y:lt)J 3 of
' equation (31) of [¢! due to the Egéig—- term in equatiocn (32) o: [9].
ivi

This contribution is given by

= ¥ * T ¥* { * -
RL = L Trypara(y-1)* Tracmrs(gopy® ED{AHTXO-D)

where, as in the program,

PD(i) = -~ M* ‘l—(‘z‘al-——)
i’1

Here, the factor -M not included in ecuation (32) of [9] provides for

the choice of field evaluatior either outside or inside S.

DO loop 18 accumulates in .1 f e contribution to (th)J__1 3 ol

equation (31) of [9] due to the ‘gzgf;” term in equation (32} of [9].
. s b .
174

This contribution i1s given by

MT
RL =
-1

. bR 4 Pp "k —_
L aMpw (- )M re2anpr( g1y PRUAMIXO-D).

LISTING CF THE SUBROUY INE YZ

SUBROUTINF YZ{NNgNPy N HI yM MY RH$ZH X9 A Yy 2)
COMPLEX UsY (T84)+s2€T784),6i452yG3,64,65,6H,¥1,¥2,Y3,Y4,21,22,23,24
DIMENSION RH(ELOL) ,ZH{L161)4,X{48),A(48)+D{L60)+PD{160)TPL320]}
DIMENSIUON CR{48),C1(4n),C2(48),C3(48),04(48)
' COMMON RS(160)4250160Q1 ySV(160)yCVI160Y,T(320)
PI=3.141593
PI M=~MxpP]
N=(NP-1)/MT-1
N2=2*N
NG=( N+ 1) *MT
NGM=NG—MT
MT 2= MY =2
DC ST I=14NG




12

19

15

16

6 A

12=1+}

DR=RH(I2)--RH{L)
DZ=ZH{IZ2)-2H{I)
D{I1)=SQRT(DR%DR+DZ%DZ)
RSUIV=.5*%(RH(I2)+RH(]))
2S(I)=.5%(ZH{I23+ZH{ 1))
SV{I)=DR/DI(I}
Cv{11=DZ/D{1)}
POLTI)=PIM/ID(I)*RSI(I))
CONT INUC

J1=0

J5=0

DD &8 J=1,N

DEL=O0.

DG 12 I=1,4MY

Jl=Jd1+1

DEL=DEL+D{J1)

CONT INUE

J1=J1-MT

SN=0»

DO 19 I=1,MT

J5=J5+1

Jl=J1+1

SN=SN+D(J1)
TP{J5)=D(J1) /DL

TS5 Y= SN-5*D(J1) )} =TP (J5)
CONTVINUE

DEL= Q.

DO 15 I=1,MT

Jl=)1+1

CEL=DFL+D(JY}

CONTINUE

J1=J1-MT

SN=DEL

DO 16 1=1,MT7

JH=J 6+ 1

Jl=J1+1

SN=SN-D(J1)
TP(US5)Y==D(J1Y/DEL
TS5 == CSNe =D SL ) T PLUS)
CUNTINUF

J1=J1-MT

COTINUE

Pra= .. %Pl

FR=NN

DO 25 K=1,NPHI
PH=R s EX{R 1)

PhHib= P AR

SH=2ST v abh¥PH)
CRAK =4 gt 5NN

R 128 A(y )

CS=# 1*¥CUSEPHN)

0 N N N T S N I
COolK =00 Py,

CR2ORY=RESINOPHYES INIP RN




C4{K})=CS
25 CONTINUE
N2N=N2%N
N& N= N2 N# 2
DO 62 J=),N4N
Y(J)=0.
2§J)=0.
€2 CONTINUE
U=(OQ'10)
DO 59 J=1,NG
FJ=FN/RS(J)
Li=1
Lz=2
IN¢JLELMT) L1=2
IF(J.GT.NGM} L2=1
J9=( J~1) /MT
JT=J+MT%(J9=2)
J5=( J9=-2)%kN2~1
S1=1.
DO 60 I=1:J
£9=01-1)/MT
IT=14MT=(19=-2,
J6=19+J5
FI=FN/RS(])
RP=RS{J)-RS(I)
ZP=2S(J)-25(1)
R2=RKPXRP+IP*ZP
IF(I.NE.J} GO TO 41
S1=.5
R2=.0625%D(J)*D(J)
&5 41 R3=RS(I)*RS(J)
L 5 Gl=0.
F 4 G2=0a
E § G3=0.
G4:OQ
G5=0.
Ge=0.
: L DO 61 K=1eNPHI
\ £ Pa=R2+R3*CR(K)
3 R5=SQRT(R4)
21=S)1/K5%(COSIRS)-UXSIN(R5})
Y1=7i*(1.+U%*R5) /R4
G1=C 1(K)*Y] +G1
62=C2(K)*Y]+G2
G3=(C3{K)*V]1+4G3
G4=C4iK)*2 1+4G4
G5=C2(K)Y*114G5
; C6=C3(K)*71 466
8. 61 CONTINUE
. Gi=U%s(G3
! ‘ Y= (ROBCV (U )=ZP*SV (1) *G2=RS (1 )ACV I J) %G1
Y2=(RS{JI*SVOT)*CV LGRS ITIDV RSV IRV 1-ZP2SVITY#SV{J) ) *G3
Y3=7P%(3
Y4z (RPECVIT Y- 2P2SVIT)) %G4RS (JIRCV T ) %Gy
Z1=UA{ SVIT =SV gIxCo+C VLT ) 20y £ J) G4 )

Gl=-U*G4
12=- SV JI*Go
G2=—F1%G4

23=SVI11%G6
G3=F &G4

S A
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246=U( G5~F [#G3)
Ki=1 ‘
K2=2 !
IFCILLELMT) Ki=2 '
IF(1.GT.NGH) K2=1 b
DO 31 L={1,L2 J
LT=g THMT
JT=J)6+ LxEN2

DO 32 K=K1,K2
b & KT=1 TeMT*K

| TY¥=TILT" *T(KT)
y J1=J 74K
J2=21+N

J3=J 1+ N2N ‘
‘ Jé=J 3+N i
8 Y(JL)=TTxYL+Y(JL1) ;
: i Y(J2)=TTY24Y(J2) f

YEJd3)=TTxY34Y(J3)
Y{J4)=TTEYSL4+Y( j&)
20JLI=TT*Z 1+ TP{LT)%TP(KTI®GL+Z{J1)
Z(J2)=TT*Z224TP(LT)*TUKT)*G2+7(J2)
2(J3)=TT*Z3+TP(KTI*T(LTI*G3+2{ 13}
2(Ja)=TT*2442(34)
32 CONTINUE
31 CONTINUE
60 CONT INUE
59 CONTINUE
, N2P=N2+1
: KD1=1
4 J1=0
J5=0 ;
DO 11 J=14N ‘
R1=0.
B DO 17 I=1.MT2
B Jl=Jli+}
F J5=J5+1
' R1=RI+TC(J2Y2TCJILIRPL (I5)
17 CONTINUE
J1=J1-MT?
J5=J5-MT2
KDZ=KD1 +N
KD3=KD1+N2N
KD4=KD3+N
Gl=Y (KD1)=-Y (KD&)
Y(KD1) =F1+4G1
Y(KD2)=0.
Y{KD3)=0.
Y{KD4)=R1-G1
Z(KD1)=Z(KD1)+2{KD1)
Z{KDZ) =2 (KD2)-Z(KD3)
24KD2j=-2(KD?2)
JUKDG =2 (kD4 +Z{KDG)
IFtJ=-1) 264,27,26
27 J1=21+4MT72
35=J5+M1
GO T 22
: 26 KU1=KD1-1
b KUR=KD2~1
1 : KU3=KD3-1

e ana i . .
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KU&4=KD4—1

CLL=KD =N

KL2=KD2--N2

KL3=KD3~N2

KL 4= KD 4—MN2

Rl=0.

DO 18 I=1,MT

Jl=J1+1

J5=J5+1

R1=RI+T{J1)=T(J1~-MT)*=rD{J5)
18 CONTINUE

Ji=J1+MT

Gl=Y (KUl I~Y{KL4)

» G2=Y {(KU4)-Y{KL1)
Y(KULl)=R1+G1
Y{KU2)=Y(KU2)-Y(KL2)
Y(KU3=Y(KU3)-Y(KL3}
Y{KU4)=R1+G2
Y{KL1)=R1~G2
YEKL2)==Y{(KL2])
Y(KL3)==Y¥{KU3)
Y(KL4)=k1-G1
Z(KULY=Z (KUL)+Z(KL1)
ZIKU2)=Z{KU2)-Z(KL3)
Z(KU3) =2 (KU3)=2Z(KL2])
2{KU4)=Z(KU4}+Z (KL%}
Z(KL 1Y =Z(KUL)
Z(KL2)=—Z{KU3)
Z(KL3)==2{KU2)
Z{KL4) =Z (KU4)

22 KD1=KD1+N2P

11 CONT INUE
IF(NeLT.3) RETURN
J2=N2
DO 13 I=3,N
J2=J2+N2
Jl=1-2
KL 1l=1
DO 14 J=1.J1
KUl=.42+J
KUZ=KUL+N
KU3=KU1+N2MN
KU4=KU3 +N
KL2=KL1+N
KL3=KL 1+NZN
KL4=KL3+N
YKL 1) ==Y(KU4)
Y(KL2)Y=—Y{KUZ]}
Y{KL3) ==Y(KU3)
Y{KL4)=-Y{KUL)
ZIKL1)=Z (KU1}
ZIKL 2} =~2{KU3)
ikl 3Yy=—21KU2)
ZIKL4)=7(KU4)
KL1=KL I+N2

14 CONT INUE

13 CONTINUE
RETURN
END
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I1T. THE SUBRCUTINE PLANE

Descrigtiqg:

The subroutine PLANE(NN, N, MT, NT, THR, R) puts Rgg of (49) in
R(J + (m-1)#N+(L-1)%4*N) where j=1,2,...N, m=) denotes pq = t8, mwsi

denotes pq = ¢94 m=3 denotes pq = t¢, m=4 dinotes pq = ¢¢, and L=1,2,...NT,

LAl

Here, L denotes the L¢h walue of the receiver angle Hr. The first 5

arguments of PLANE are input variables. Except for the new input v:-t{able

MT, the subroutine PLANE is the same as the old subroutire PLANE on p=ages

22-26 of [10]. If MT = 2, these subroutines are exactly the same as far

as the calculation of R in terms of the rest of the input variables is

concerned.

'he integration of f (t) over t inherert in (49) 1s approximated

by samp ‘ing fj(t) 2*MT times instead of 4 times. The representatlon of
pﬁi(t) given by (66) of [9] is replaced by (77). NN is the walue of n
ap;earing in Rﬁ?. It is required that NN > O but this requirement causes

no real loss of generality because Rig is either even or odd in n. N is

the number of expansion functions lying c¢n the generating curve.

Specifi-

cally, N is the maximum value of i in (77). THR(L) is the Tth value of
the receiver angle Or where L = 1,2,...NT. The variables RS, ZS§, SV, CV,

and T appearing in the comnon statement e.rly iu the subroutine PLANE are

input varishles calculated by calling the subroutine YZ beforehaad. The

calculated values of these vaiiables depend only on the recond, fifth,

sixth, and geverth arguments (WP, MT, R4, ZH) of YZ.
Minimum allocations are given by

COMPLEX R(4*NT*N)
DIMENSION THR(NT), B.J(M)
COMMON RS(NG), ZS(NG), SV(G), CV(NG), T(2*MT*N)

where
NG = (N+1)*M,

and M is the largest of the values of M calculated by PLANE. The sug-

gested allocation BJ(50) will work if the maximum circumference of the

body uf revolution is less than 26 wavelengths.

it € b dlrs AN D S RSN R
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Most of the statements in the subroutine PLANE are the same as
or very simjlar to statements in the old subroutine FLANE listed on
pages 25-26 of [10]). The major diffovence is in the calculation of
the subscript (TT+MT*K) for T and the subscript J1 for R. Using

reasoning similar to that used to obtain the subscripts KT and J1 in the

subroutine YZ, we arrive at

(IT + MT*K) = I + (I9 + K=7)*MT

it

J1 I9 + K-1

where
19

[(1-1) /M1]

The above J1 is valid only for L=1. If L # 1, then (L-~1)#%4*N must

be added to this Jl1.

LISTING OF THE SUBROUTINE PLANEC

SIBROUT INF CLANE(NNy Ny MToNT,y THR4R)
COMPLEX R{1064)sU,Ul U2,R1,R2,R3;R4
DIMENSION THR{37),BJ(50)
COMMON RS{160),25(160) 4SVI160},CV(160),T{320)}
NG=( N+1)*MT

U=(0-91c3

Hi=3,141592%U=xaMN

Mé=4%N

JP=NGENT

D 22 Jy=1.J%

REJy =0,

CUNY INUF

Jo=~1

DO 12 i..z}.yx.\ii

CS=C0SETHR I ¥

SN=2 o= STN{ THRILE)

pOCL3 T=1eNG

Nz=a 26 R S {1 eSH

TN F.G50 75 G0 TO LG

M=2, 8%+ 13.-2./X

TFIX L Taa5? M=) G M vinl DX
IFIM.GE.(N+2) ) GO 10 19
BJi=0.

BJZ=0.

BJ3=0-

[F{NN.TGLL) BIY=D,
IF{NNSG.0) Bir=l.

GO TO 24

BatMl=0.

=M -1

BltaMyz=1.

e I e e )
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DO 14 J=3,;M
JM=J M=)
BJCIM) =M/ X%BI(IMeL} ~BI(IM+2)
14 CONTINUE
S=Q.
DO 15 J:‘37M,2
S=5+B8J(J)
15 CONTINUE
* S=BJ(1)+2.*5
BJ2=BJ(NN+1)/S
BJ3=BJ (NN+2) /8
BJl=-BJ3
IF(NN.GT.0) BJ1=BJINN]} /S
24 ARG=2S5{1)*CS
U2=U1%(CCSTARG)I+U=SIN(ARG))
Ra={ BJ3-BJLI*UxU2
R2=(BJ3+BJL) *U2
R1=—BJ2%CVII1)=SNeU2+CS*SV{])} *R4
R3=SV{I)*R2
R2=-CS*%R2
I9=( I-1} /MT
IT=1#+MT*(]19-2)
J7=19+J5
Ki=1
K2=2
IF(19.EQ.0) K1=2
IF{IS.EQ.N}) K2=1
DC 20 K=K1l,K2
TT=T({IT+MTX*K)
J1=J T+K
J2=J1+N
J3=0 24N
Ja=J32+N
RIUJL}=TTxR1+R{J1)
RIJ2¥I=TTRR2+R(J2)
R{J3I=TT*R3I+R(43)
R{J4)=TT*R4+R{J4)
20 CONTYINUE
13 CONTINUE
J5=J54¢N4
CONTINUE
RETIIRN
END

[,
N

70
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IV, THE SUBROUTINES DECOMP AND SCLVE

Description:
The subroutines DECOMP(N,IPS,UL) and SOLVE(N,IPS,UL,B,X) solve
a system of N linear equations in N unknowns. These subroutines will
be used in Section V to solve the matrix equation (39). The input to
DECOMP consists of N and the N by N matrix of coefficlents on the left-
hand slde of the matrix equation stored by columns in UL. The cutput
from DECOMP is IPS and UL. This output is fed into SOLVE. The rest of

the input toc SOLVE consists of N and the column of coefficients on the

right-hand side of the matrix equation stored in B. SOLVE puts the

solution to the matrix equation in X.
Minimum allocations are given by

COMPLEX UL(N#*N)
DIMENSION SCL(N), IPS(N)

in DECOMP and by
COMPLEX UL(N*N), B(N), X(N)
DIMENSION IPS(N)

in SOLVE.

More detail concerning DECCMP and SOLVE is on pages 46-49 of [13]
LISTING OF THE SUBROUTINES DECOMP AND SOLVE

SUBROUTINE DECOMP{N, IPS,UL)
COMPLEX UL(3136):P1VOT,EM
DIMENSICN SCLES6),IPS(56)
DO 5 I=1.N
IPS()=1
3 RN=0.
o Jl=1
: DO 2 J=1.N
] ULM=ABS(RE AL (UL{J1) ) )+ ABSTATMAGIULtIL) )
: . Ji=J 1+N
1 IF(RN=ULM) 14242
; 1 RN=ULM
§ ’ 2 CONTINUE
P SCL(1)=1./RN
5 CONTINUE
NM1=N-1
K2=0
DO 17 K=1yNM1
B1G=0.
DO 11 I=K,N
IP=1PS LI}
IPK=1P+K2

PReT s
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SIZE=({ABS{REAL(ULIEPKI V) +ABSUAIMAGLUL(IPK) }) I%SCL(IP)

IF(S12E-BIG) 11412:10
10 BIG=SIZE
1PV=1
11 CONTINUE
IF{IPV-K} 1l4.15:)4
14 J=IpPS(K)
IPS(KY=IPSCIPV)
1PS(IPV)=J
) 15 KPP=IPS(K)+K2
PIiVDT=UL(KPP)
. KPl=N+1]
DO 16 I=KP1l,N
Kp=KFp
IP=IPS(1)+K2
EM=-UL(IP)/PIVQT
18 ULEIP)Y=—EM
N0 16 J=KP1lyN
Ip=IP+N
KP=K P+N
UL{IP)<ULLIPI+EMRUL(KP)
16 CONTINUE
K2=K2+N
17 CONT INUF
RETURN
END
SUBROUT INF SOLVE(N,IPS,ULyBsX)
COMPLEX UL (3136} +B(56) X156}, SUM
DIMENSION IPSIS6)
NP1=N+1
IP=1PS(1}
X€1) =B [P}
DO 2 1=2,N
IP=1PS(1)
1PB= b
IM1=1-1
SUM=0.
DC 1 J=1,IMi
SUM:= SUM< UL (TP} #X(J)
IP=1P+N
X{1)=B{IPBi~SUM
K2=N»x{ -1}
IP=]1 PSENI+K2
XEN) =X(N1ZULLIP)
DO & IBACK=2,N
IT=NP1-1BACK
K2=K =N
IPI=IPS(1)+K2
. IPl=1+1
SUM=0.
ip=1pI
0003 J=1P1,N
Pp=lpeN
3 SUM= SUMLUL (TP EARXTS)
4 X{I = (X(I)-SUMI/ZULLIPE)
RETURN

Y

END
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V. THE MAIN PROGRAM

Description:

The main program calculates the electric and magnetic currents
%6 %9
(58)-(59) and the normalized scattering cross sectionsxg— and-%q (70)

for the 6 polarized axially incident (et = 180°) plane wave (50)-(51).
The main program calls the subroutines YZ, PLANE, DECOMP, and SOLVE,
The main program is short and simple. It is a representative applica-

tion of the theory in Part One of this report.
Input data is read early in the main program according to

READ(1,10) NP, NPHI, MT, NT
10  FORMAT(413)
READ(1,11) BK, UR, ER, ALP, BET
11  FORMAT(SE14.7)
READ(1,12) (RH(I), I=1, NP)
READ(1,12) (ZH(I), I=1, NP)
12 FORMAT(10F8.4)
READ(1,11) (X(K), K=1, NPHI)
READ(1,11) (A(K), K=1, NPHI)

The input variables NP, NPHI, MT, RH, ZH, X, and A are very
similar to variables of the same names in the argument list of the sub-
routine YZ. In summary, (RH(i), ZH(i)), 1=1,2,...NP, are the cylindrical
coordinates (p;, z;) on the generating curve, 2*MT is the number of values
of t at which fj(t) is sampled for the purpose of numerical integrationm,

and X and A are respectively the abscissas and weights for the NPHI point

Gaussian quadrature integration in ¢.

The scattering cross sections are evaluated at receiver angles
er = (J-1)w/(NT-1) radians for J=1,2,...NT. BK is the propagation
constant k in the external medium. This k appears in (50)-(51). UR

and ER are respectively the relative permeability ;g-and the relative
€ e
permittivity Eg of the body of revolution. Here, Mg and €4 are the

e
permeability and permittivity of the (diffracting) body of revolution
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and e and €, are those of the external medium. ALP and BET are respec-
tively the constants o and £ appearing in (39). The PMCHW solution is
obtained by setting a = 8 = 1., The Miiller solution is obtained 1f a and
8 are given by (22) and (23).

Minimum allocations are given by

COMPLEX YE (4*N*N), ZE(4*N*N), R(4*NT*N),
B(4*N), YD(4*N*N), ZD(4*N*N), Y(L6*N*N),
C(4*N)
DIMENSION RH(NP), ZH(NP), X(NPHI), A(NPHI),
THR(NT), RC(N), IPS(4*N)
where
N = [(NP-1)/MT] - 1

Statement 38 puts Y, defined in accordance with (75) by

le
tt )
Yle Yle
Y, = (84)
¢t o¢
Yle Yle
in YE and Zle defined in accordance with (76) by
tt té
zle Zle]
Zie = (85)
¢t 1)
Zle Zle

in ZE. Storage of Yle and Zle is by columns.

Statement 39 puts the matrix Rl defined by

r+te *t¢‘
R R’

R (86)

_i
1 |
+¢8 %é¢
[Rl K

in R. The column vectors on the right-hand side of (86) appear in (56).
For receiver angle er = THR(J), Rl of (86) is stored by columns in
RC(J-1)*4*N+1) through R((J*4*N).
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DO loop 22 uses (56) to store the right-hand side of (39) in B,

DO loop 22 also puts 2/(ka*MT+l) in RC where P AMTH] is the cylindrical
coordinate radius evaluated at the peak of the tricngle function inherent

in fI(t).

Statement 40 puts Yld defined by

tt té
Y14 Y14
Y, - (87)
ot so¢
Y14 Y1d
in YD and Zld defined by
tt té |
214 214
Z,4" (88)
¢t o
214 ZldJ

in ZD. Storage of Yld-and Zld is by columns.

Nested DO loops 26 and 27 put the first two columns of submatrices
on the left-hand side of (39) in Y. The index J of DO loop 26 denotes
the Jth column of the composite square matrix on the left-hand side of
(39).

Nested DO loops 28 and 29 put the third and fourth columns of sub-
matrices on the left-hand side of (39) in Y. The index J of DO loop 28
denotes the (2*N+J)th column of the composite square matrix on the left-

hand side of (39).

Statements 41 and 42 solve the matrix equation (39) for the com-
posite column vector consisting of 6;, Vi, f;, and fi. This composite
column vector is stored in C.

At the peak of the Jth triangie function, the n=1 term of the

equivalent electric current (58) reduces to

75



6 ., - to - 46
L= @loypagn) Ty Beoos ¢+ 2d/oypag,y) Iy 4ysine (89)

DO loop 31 prints the real and imaginary parts of

- 0
UL = (2/ (Kopypy 107y

the real and imaginary parts of

= - ¢8
U2 = 23/ oy )y
and the magnitudes of Ul and U2. Here, Ul is the t component of the
equivalent electric current in the E plane and U2 is the ¢ component
of the equivalent electric current in the H plane when the y component

of the incident magnetic field is minus one at the origin.

At the peak of the Jth triangle function, the n=1 term of the

equivalent magnetic current (59) reduces to

)Vte u sin,¢+-(2/p;T*J+1)V:§ 3¢cos ¢ (90)

0
! 17 %

3 (=

= (237 PMT*J+1

DO loop 34 prints the real and imaginary parts of

_ - t8

and the real and imaginary parts of
U2 = (2/(kprrrgri)0VY
MT*J+1°7 "1J

and the magnitudes of B(J) and U2. Here, B(J) is the t component of
the equivalent magnetic current in the H plane and U2 is the ¢ component
of the equivalent magnetic current in the E plane when the x component

of the incident electric field is minus one at the origin.
o c

Nested DO loops 35 and 36 calculate and print 7§§-ana 7§§-of (70).

Inner DO loop 36 accumulates the portion
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of (62) in ET and the portion

SEOXLD  =00200 . =t
11 "/ TRL 14

of (63) in EP. The W1 and W2 printed in DO loop 35 are respectively
%%? and %ﬁ? for receiver angle er = (J-1)*n/(NT-1) radians.
Suggested modifications of the main program are:
1) Changing the normalization of the scattering patterns.
For example, one could replace (70) by (69). All scat-

tering patterns in Part One, Section V are plots of (69).

2) Removing the restriction that the values of the input
arguments NP, NPHI, MT, RH, ZH, X, and A of the subroutine
YZ be the same in call statements 38 and 40. This modifi-
cation is indicated by (74).

3) Generalizing from axial plane wave incidence to oblique

plane wave incidence.

The above three modifications can be realized without tampering with

any of the subroutines YZ, PLANE, DECOMP, and SOLVE.

The sample input and output accompanying the listing of the

main program is for the dielectric sphere with ka = 1 and €. = 4,
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LISTING OF THE MAIN PROGRAM

J/P3M JOB (XXXXeXXXX41,2)y"MAUTZ,J0E!' yREGION=200K
// EXEC WATFIV
//G) «SYSIN DD *
$J08B MAUTZ,TIME=1y PAGES=40
C SUBRCUTINES YZ, PLANE, DECOMPs AND SOLVE ARPE CALLED.
COMPLEY YE(T784),ZE(784),R(1064)+4B(56),YD(T784)4ZN(T784),Y(3136)
COMPLEX C(56)+Uy,UlsU2,ETLEP,CONJG
DIMENS ION RH{161), ZH(161},X(48)4A048)4THR(37),RC(19),IPS(5€)
READ(1,10) NPyNPHI ¢4MT,NT
10 FORMAT{413)
READ(1,11) BKyUR,ER,ALP,BET
11 FORMAT{5El14.7)
READ(1412)(RH{I),I=1,NP)
READ(L,12){ZH(1},1=1,NP)
12 FORMAT(10F8.4}
READ(1,411)(X(K),K=1,NPHI)
READ(1,11){A{K)yK=1,NPHI)}
WRITE(3,13) NPsNPHISMTNT
13 FORMAT(* NP NPHI MT NT*/{1X,13,15,213))
WRITE(3+14) BX,UR+ERJALP,BET
14 FORMAT (T X, "BK?® y12X " URYy 12X YERY 4 11Xs"ALPY ,11Xy"BET*/(1LX+5E14.7))
VIFITE(3,515) (RH(I)+I=1, NP}
15 FORMAT(* RH'/(1X,10F8.4))
WRITE(3,16)(ZH(1),1=14NP)
16 FORMAT(" ZH'/(1X,10F8.4))
NRITE(B,I?)(X(K,1K=1vNPHI)
17 FORMAT(* X*/(1X45E14.7))
WRITE(3,18)(A{K)K=14NPHI)
18 FORMAT(* A*/(1Xy5E14.7)1}
DO 19 J=1,4NP
RH(J)=BK%*RH(J)
ZH(J)=BK*ZH(J)
19 CONTINUE
38 CALL YZ(14sNPyNPHI y=1 4MT4RHyZHsX: A, YE,ZE)
WRITE(3+20)(YE(I)yI=144)4{ZE(]1),I=1,4)
20 FORMAT(® SOME ELEMENTS OF YE AND ZE'/(1X+4E14.7))
P1=3.141593
DT=PI/(NT-1)
DO 21 J=1,NT
THR{J) =(J=-1)%DT
21 CONTINUE
N={(NP-~1) /MT-1
39 CALL PLANE(1,NsMT4NT,THR4R)
N2=2=N
N3=3*N
Ng=4 =N
NTN=(NT=1)*N4
DO 22 I=1N
J3=T+NTN
B(I)=R(J3)
BULI+N)==R(J3+N)
BLI+N2)=-R(J3+N3)
B(I+N3)=—-R(J3+N2)
RC(I)=2./RH(MT=]1+1)
22 CONTINUE
WRITE(3,23)(E(1)4,1=14N2)
23 FORMAT (' HALF CF THE ELEMENTS OF B'/(1X+4514.7))
EM=SQRT(UR*ER)
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24
40

25

21

26

29
28
41
42

30

N0 24 I=1,NP
RH{I)=EM*RH(I])
ZH{I }=EM*ZH(1)
CONTINUE

CALL YZ(1+NPyNFHIs1aMT sRHsZH X ,A,YD,2D)
WRITE(3,25)(YD(I)sI=194)4(2ZD(1)¢1=14¢4)
FORMAT (* SOME ELEMENTS OF YD AND ZD'/(1X,4El4.7))

D=SQRT(UR/ER)

ALPD=ALP*D

BETD=BET/D

JY=0

J1=0

DO 26 J=1,4N2

DO 27 I=14N

JY=JY+1

J1=J1+1

J2=J1+N
Y{JY)I=YE(J2)+ALPXYD(J2)
Y(JY+N)==YE (J1 }-ALP*YD(J1)
Y{JY+N2)=2E(J2)+BETD*ZD(J2)
Y{(JY+N3)==ZE(J1)~-BETD*ZD (Jl)
CONTINUE

JY=JY+N3

J1=J1+N

CONT INUE

J1=0

DO 28 J=1,4N2

DO 29 I=1,4N2

JY=JY+1

Jil=J1+1
Y(JY)=ZE(JL)+ALPD*ZD(J 1)
YOJY+N2 ) =YE(J1)+BET*YD{J1)
CONTINUE

JY=JY+N2

CONTINUE

CALL DECCMP(N4,1PS,Y]}

CALL SULVYE{(N44IPS,YB,yC()
WRITE(3,30)

FOCRMAT('0 REAL JT IMAG JT

1MAG JP*)

32
31

33

U={0.yl.)

DO 31 J=1-N

RER=RC(J)

ET=U%*RR

B{J)=ET=*=C{J)

J1=J+HN

B{J1}=RR=C(J1)

Ul=KR=( (JeM2)

UP=FET={ { J+N2}
W1=CABS(Ul)

W2=CABS(U2)

WRITE(3,432) Ul,U24W1l W2
FORMAT({1X,6E11.4)

CONT INUE

WRITE(3,23)

FORMAT('0 REAL MT IMAG MT
1MAG Mp7Y)

DO 34 J=14N

uz=BlJ+N)

Wi=CABS(BR(J))

REAL JP IMAG JP

REAL Mp IMAG MP
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w2=CABS(U2)

WRITE(3,32) B{J)4U2.Wl W2
34 CONTINUE
"WRITE{(3,37)
FCRMAT(*0 SIGTHETA
CON=,25/P1*#3
JR1=0
DO 35
ET=0.
Ep=o -
DC 36 I=14N2
JC2=I+N2
JR1=JR1+1
JR2=JR1+N2
ET=ET+R(JR2)*C(I)+RIJRLI*C(JC2)
EP=EP-RUJRLI*C{I)+R(JR2)*%C(JC2)
CONT INUE
JR1=JR1+N2
W1=CON*ET*CONJG(ET)
W2=C CN*EP*CCNJG(EP)
WRITE(3,32) Wl,W2

37 SIGPHI')

J=14NT

36

35 CONTINUE
sTCP
END
$DATA
21 20 2 19
0.1 000000E+01 0.1CO0000E+0l 0.4000000€+01 0,100Q000E+01
0.0000 0.1564 0.3090 0.4540 0.5878 0.7071 0.8090
1. 0000 (C.9877 0.9511 0.8910 0.8090 0.7071 0.5878
0. 0000
-1.06000 -0.9877 -0.9511 -0.8910 -0.8090 -0,7071 ~0.5878
0. 0000 0.1564 0.32090 O0.4540 0.5878 0.7071 0.8090

1. 0000

0.10000C0E+01
0.8910 0.5511
0.4540 0.3090

~0.4540 -0.3090
0.8910 0.9511

~0.9931286E+00-0.963G713E+00~-0,9122344F+00~0,8391170E+00-0.7463319E+00
~0.6360537€E+00-0.5108670E+ 00~0e3737061E+00-0.2277859E+00-0.7652652E~01

0.3737061E+00 0.5108670E+CO
0.9122344€+00 0.9639719E+00
0.6267T205E-01 0.8327674E-01
0.1420961E+00 0.14917306E+00
0.1420961F+00 0.1316886E+00
0.6267205E~01 0.,4060143E~-01

0.2277859E+ 00
0.8391170E+00C
0.4060143E-01
0.131£886E+00
0.1491730E+00
0.8327674E-01

0.7652652 01
0.7453319E+00
0.1761401E-01
0.1181945E+00
0.1527534E+00
0.1019301E+00

$5ST0P

/1 *

//

PRINTED CUTPUT
NP NPHI MT NT

21 20 216
BK UR ER ALP
0.1000000E+01 0.10CO0000E+OL 0.4000000E+91 0.1000000E+01

RH
0.0000 0.1564 0.2090 0.4540 0.5878 0.7071 0.8090
1. 0000 0.9877 0.9511 0.8910 0.8090 0.7071 0.5878
0. 0000 :

ZH .

~1.0000 —0.9877 ~0.9511 -C.8910 -0.8090 =0. 7071 ~0.5878
0. 0000 C.1564 0.32090 0.4540 0.5878 0.7071 OQ.80SC
1. 0000

X
~0.9931286F+00~0.9639719c+00-0.9122344E+00-0.8391170E+00—

80

0.6360537TE+00
0.9931286E+00
0.10193C1E+00
0.1527534E£+00
0.1181945E+00
0.1761401E-01

BET
0.1000000€E+01
0.8910 0.9511
0.4540 C€.3090

-0.4540 -0.3090
0.8910 0.9511

0.746331595E+00

0.9877
0.1564

"0. 156‘0
0.9877

0.9877
0.1564

-0.1564
0.9877



=0.6360537E+00~0.5108670F+00-0,3737061E+00-0,2277859E+00~0.T76526£2€~-01
0.7¢€52652F-01 0.2277859E+00 0,3737061E+00 0,51086T0E+00 0.£36053TE¢+ 00
0.7463319E+00 0.8391170E+00 0.9122344E+00 0.9639719€+00 0.9931286F+00

A
0.17¢1401E~01 0.4060143E-01
0.1181945F+00 0.121¢€886E+CO
0.1527534F+00 0.1491730E+00
0.1019301E+00 0.8227675E-01
SOME ELEMENTS OF YE AND ZE

0.10193C1E+00
0.1527524%+00
0.1181945E+00
0.17614C1E-01

0.6267208E-01 0.8327675E-C1
0.1420961E+400 0.1491730E+00
0.1420961E+400 0.1316886E+00
Ce6267208E-01 0.4060143E~01

0.2421891E+01-0.5482869E~02
0.1015252E+00-0,2041826E~01
0.9008127E~-01-0.7025097E+01
0.5597932E-01 0.7892063E+00

0.5072693E+00-0.1154096E-01
0.9178627E-01-0.3066700E~-01
0.7607359E-01 0.1940044E+01
0.3345479E~01 0.2816698E+00

HALF CGF THE ELEMENTS OF 8
-0.5464500E+00-0.7503574E+00~0.5449371F+00-0.5690688E+00
- 0.4 709502E+00~0,3229641E+00~-0.,2808148E+00-0.105407T7E+00
0.0000000E+00-0.1778790E~01 0.2808146E+00-0.1054077E+0O0
0.4 7C9504E+00-0,3229641E+00 0.5449370E+00-0.5690686E400
0.5464502E+00-0.7503576E+00 0.7951685E+00-0.5814634E+00
0.7044444E+00~0.6853659E+00 0.5376098E+00-0.8194968E+00
0.2939058E+00~0.9327149E+00~0,0000000F+00-0.9769601E+00
=0.2939057E+00-0.9327147E+00~0.5376099E+00-0.8194970E+N0O
~0.7044442E+00-0.685365TE+00~0.7951688E+D0~-0.5814€636E+00
SOME ELEMENTS OF YD AND 2D
—0.2290969E+01-0.3768066FE-01-0.3189305E+00~0.7057¢31E-01
0.9599513E~-01-0,1088477E+00 0,4942125E-01-0.1374637€400
0.3428959F+00-0,2902117E+01 0.2818084FE+00 0.1262741E+Cl
0.2082631E+00 0.5027283E+00 0.1465860FE+00 0.1911734E+00

REAL JT IMAG JT
-0.6398E+00-0.1395E+01
~0.8349E+00-0.1227E+01
=0.1025E+01-0.92T4E+00
-0.1127E+01-0.4861E+0D
-0.1094E+01 0.5150E-01
~0.8731E+00 0.58T74E+00
-0.5410E+00 0.1026E+01

REAL JP
0.6170E+00
0.8652E+00
0.7285E+00
0.6632E+00
0.4185E+00
0.1349E+00
0.1116E+00

—-0.1626E+00 0.1320E+01-0.9319E~-01

0.,1722E+00 0.1479E+01l

REAL MT IMAG MT

0.2244E+400

REAL MP

IMAG JP
0.1415E+01
0.1174E+01
0.9655E+00
0.691TE+00
0.631&E+00
0. T185E+00
0.1011€+01
C.1256E+01
0.1496E+01

IMAG MP

-0.,1064E+00-0.68C6E+00-0.8434E~01-0.6963E+00
=0.2323E+00-0.5834E+00-0.2176E+00-0.5837E+00
-0.3712E+00-0.4190E+00-0.1639E+00-0.5138E+00
~0.4731E+00-0.180GE+C0-0,1442E+00~-0.,4209E+00

—-0.5072E+00
~-0.4451E+00
~0.2171E+00
-0.1556E+00
-0.1304E-01

0+1093E+00-0.4617E-01-0. 4199€+00
0«3992E+C0 0.5351E-01~0.4940F+00
0.6397E+00 0.70186-01-0.6418E+00
0.8002E+00 0.1272E+00~0. 7501 E+00
0.8852E+C0-0.1307e-01-0.8971E+00

MAG JT
0.1535E+01
0.1484E+01
0.1382E+01
0.1228E+01
0.1096E+01
0.1052E+01
0.1160E+01
0.1330E+01
0.1489E+0C1

MAG MT
0.6889E+00
0.6279E+00
0.5598E+00
0.5065E+00
0.5188E+00
0.5979E+00
0.7140E+C0
0.8152E+00
0.8853E+00

SIGTHETA
0.1535E+00
C.1488E+00
0.1355E+00
0.1153E+00
0.9112E-01
0.,6592E-01
0.4260E-01
0.2343E-01

SIGPHI
0.1535E+00
0.1523E+00
0.1489E+00
0.1433E+CO
0.136CE+00
0.1272€+00
0.1176E+CO
0.1074E+CO

81

MAG JP
0.1543E+Cl
0. 1459E+01
0.1210E+C:
0.5582E+00
0.7576E+00
0.7T311E+00
0.1017E+01
0.1260E+C1
0.1513E+01

MAG MP
0.7014E+00
0.£230E+CO
0.5393E+CO
0.444SE+CO
0.4224E+ 00
C.4969E+00
0.6457E+CO
0.3003E+00
0. 8372E+00



0.9801E-02
0.2164E-02
0.1589€E-03
0.2810E=-02
0.8790E-02
0.1666E-01
C.2504E-01
0.3278E-01
0.3895E-01
0.4290E-01
0.4426E-01

0.97228-01
0.8741€E-01
0.7831E-01
0.7015E-01
0.6308E-01
0.5717e-01
0.5241E-Cl
0.4879F-01
0.4475€E-01
0.4426E-01
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